Declarative Deep Learning From Your Laptop To Production With Ludwig and Horovod
Deep learning frameworks encourage you to focus on the structure of your model ahead of the data that you are working with. Ludwig is a tool that uses a data oriented approach to building and training deep learning models so that you can experiment faster based on the information that you actually have, rather than spending all of our time manipulating features to make them match your inputs. In this episode Travis Addair explains how Ludwig is designed to improve the adoption of deep learning for more companies and a wider range of users. He also explains how the Horovod framework plugs in easily to allow for scaling your training workflow from your laptop out to a massive cluster of servers and GPUs. The combination of these tools allows for a declarative workflow that starts off easy but gives you full control over the end result.